The Great Red Spot is a persistent high-pressure region in the atmosphere of Jupiter, producing an anticyclonic storm 22° south of the planet's equator. It has been continuously observed for 188 years, since 1830. Earlier observations from 1665 to 1713 are believed to be of the same storm; if this is correct, it has existed for at least 350 years. Such storms are not uncommon within the turbulent atmospheres of gas giants.
Video Great Red Spot
Observation history
The Great Red Spot may have existed since before 1665, but the present spot was first seen only after 1830 and well-studied only after a prominent apparition in 1879. The storm people had seen in the 1600s may have been a different storm than the one we see today. A long gap separates its period of current study after 1830 from its seventeenth-century discovery; whether the original spot dissipated and reformed, whether it faded, or even if the observational record was simply poor, are all unknown.
For example, its first sighting is often credited to Robert Hooke, who described a spot on the planet in May 1664; however, it is likely that Hooke's spot was in the wrong belt altogether (the North Equatorial Belt, versus the current Great Red Spot's location in the South Equatorial Belt). Much more convincing is Giovanni Cassini's description of a "permanent spot" the following year. With fluctuations in visibility, Cassini's spot was observed from 1665 to 1713; however, the 118-year observational gap makes the identity of the two spots inconclusive, and the older spot's shorter observational history and slower motion than the modern spot make their identity unlikely.
A minor mystery concerns a Jovian spot depicted in a 1711 canvas by Donato Creti, which is exhibited in the Vatican. Part of a series of panels in which different (magnified) heavenly bodies serve as backdrops for various Italian scenes, and all overseen by the astronomer Eustachio Manfredi for accuracy, Creti's painting is the first known to depict the Great Red Spot as red. No Jovian feature was explicitly described in writing as red before the late 1800s.
On February 25, 1979, when the Voyager 1 spacecraft was 9.2 million kilometres (5.7 million miles) from Jupiter it transmitted the first detailed image of the Great Red Spot back to Earth. Cloud details as small as 160 kilometres (100 miles) across were visible. The colorful, wavy cloud pattern seen to the left (west) of the Red Spot is a region of extraordinarily complex and variable wave motion.
At the start of 2004, the Great Red Spot had approximately half the longitudinal extent it had a century ago, when it reached a size of 40,000 kilometres. At the present rate of reduction it would become circular by 2040. It is not known how long the spot will last, or whether the change is a result of normal fluctuations.
A smaller spot, designated Oval BA, formed recently (March 2000) from the merger of three white ovals, has turned reddish in color. Astronomers have named it the Little Red Spot or Red, Jr. As of June 5, 2006, the Great Red Spot and Oval BA appeared to be approaching convergence. The storms pass each other about every two years but the passings of 2002 and 2004 were of little significance. Amy Simon-Miller, of the Goddard Space Flight Center, predicted the storms would have their closest passing on July 4, 2006. She worked with Imke de Pater and Phil Marcus of UC Berkeley, and a team of professional astronomers since April 2006 to study the storms using the Hubble Space Telescope; on July 20, the two storms were photographed passing each other by the Gemini Observatory without converging. In May 2008 a third storm turned red.
The Great Red Spot should not be confused with the Great Dark Spot, a feature observed near the northern pole of Jupiter in 2000 with the Cassini-Huygens spacecraft. Note that a feature in the atmosphere of Neptune was also called the Great Dark Spot. The latter feature was imaged by Voyager 2 in 1989, and may have been an atmospheric hole rather than a storm and it was no longer present as of 1994 (although a similar spot had appeared farther to the north).
NASA's Juno Spacecraft flew over the Great Red Spot on July 11, 2017, taking several images of the Spot from about 5,000 miles (8,000 km) above the surface.
Maps Great Red Spot
Structure
The oval object rotates counter-clockwise, with a period of about six Earth days or fourteen Jovian days. Measuring 10,159 miles (16,350 kilometers) in width (as of April 3, 2017) Jupiter's Great Red Spot is 1.3 times as wide as Earth. The cloud-tops of this storm are about eight kilometres above the surrounding cloud-tops.
Infrared data have long indicated that the Great Red Spot is colder (and thus, higher in altitude) than most of the other clouds on the planet. However, recent infrared measurements of the upper atmosphere show far more heat above the Great Red Spot than the rest of the planet; "acoustic waves" rising from the storm have been proposed as an explanation for Jupiter's temperature.
Careful tracking of atmospheric features revealed the spot's counter-clockwise circulation as far back as 1966, observations dramatically confirmed by the first time-lapse movies from the Voyager fly-bys. The spot is confined by a modest eastward jet stream to its south and a very strong westward one to its north. Though winds around the edge of the spot peak at ~120 metres per second (432 kilometres per hour), currents inside it seem stagnant, with little inflow or outflow. The rotation period of the spot has decreased with time, perhaps as a direct result of its steady reduction in size.
The Great Red Spot's latitude has been stable for the duration of good observational records, typically varying by about a degree. Its longitude, however, is subject to constant variation. Because Jupiter does not rotate uniformly at all latitudes, astronomers have defined three different systems for defining the longitude. System II is used for latitudes of more than 10°, and was originally based on the average rotational period of the Great Red Spot of 9h 55m 42s. Despite this, however, the spot has "lapped" the planet in System II at least 10 times since the early nineteenth century. Its drift rate has changed dramatically over the years and has been linked to the brightness of the South Equatorial Belt, and the presence or absence of a South Tropical Disturbance.
It is not known exactly what causes the Great Red Spot's reddish color. Theories supported by laboratory experiments suppose that the color may be caused by complex organic molecules, red phosphorus, or a compound containing sulphur, but a consensus has yet to be reached.
The Great Red Spot varies greatly in hue, from almost brick-red to pale salmon, or even white. In fact, the spot occasionally "disappears", becoming evident only through the Red Spot Hollow, which is its niche in the South Equatorial Belt (SEB). Its visibility is apparently coupled to the SEB; when the belt is bright white, the spot tends to be dark, and when it is dark, the spot is usually light. These periods when the spot is dark or light occur at irregular intervals; as of 1997, during the preceding 50 years, the spot was darkest in the periods 1961-1966, 1968-1975, 1989-1990, and 1992-1993.
Mechanical dynamics
There is no definitive theory as to what causes the formation or color of the Great Red Spot. Laboratory studies are examining the effects that cosmic rays or UV Light from the Sun have on the chemical composition of the clouds of Jupiter. One question is whether the Sun's radiation reacts with ammonium hydrosulfide in the planet's outer atmosphere to create the deep red color. Research has shown that the storm produces extreme amounts of heat because it simultaneously generates gravity waves and acoustic waves. When these turbulent energy waves collide 500 mi (800 km) above the red spot, they create extremely high temperatures in the planet's upper atmosphere. The effect is described as being like "crashing [..] ocean waves on a beach". The reason the storm has continued to exist for centuries is that there is no planetary surface to provide friction (only a liquid core of hydrogen); circulating gas eddies persist for a very long time in the atmosphere because there is nothing to oppose their angular momentum.
See also
- Atmosphere of Jupiter
- Great Dark Spot, a similar storm on Neptune
- Great White Spot, a similar storm on Saturn
- Extraterrestrial cyclone
Notes
References
- [Numerous authors] (1999). Beatty, Kelly J.; Peterson, Carolyn Collins; Chaiki, Andrew, eds. The New Solar System (4th ed.). Massachusetts: Sky Publishing Corporation. ISBN 0933346867.
- Beebe, Reta (1997). Jupiter the Giant Planet (2nd ed.). Washington: Smithsonian Books. ISBN 1560986859.
- Hockey, Thomas (1999). Galileo's Planet: Observing Jupiter Before Photography. Bristol, Philadelphia: IOP Publishing. ISBN 0750304480.
- Peek, Bertrand M. (1981). The Planet Jupiter: The Observer's Handbook (Revised ed.). London: Faber and Faber Limited. ISBN 0571180264.
- Rogers, John H. (1995). The Giant Planet Jupiter. Cambridge: Cambridge University Press. ISBN 0521410088.
- Smith, B. A.; et al. (1979). "The Jupiter system through the eyes of Voyager 1". Science. 204: 951-957, 960-972. Bibcode:1979Sci...204..951S. doi:10.1126/science.204.4396.951. PMID 17800430.
External links
- Yang, Sarah (April 21, 2004). "Researcher predicts global climate change on Jupiter as giant planet's spots disappear". UC Berkeley News. Retrieved 2007-06-14.
- Phillips, Tony (March 3, 2006). "Jupiter's New Red Spot". Science at NASA. Archived from the original on October 19, 2008. Retrieved 2007-06-14.
- Phillips, Tony (June 5, 2006). "Huge Storms Converge". Science at NASA. Retrieved 2007-06-14.
- Youssef, Ashraf; Marcus, Philip S. (2003). "The dynamics of jovian white ovals from formation to merger". Icarus. 162 (1): 74-93. Bibcode:2003Icar..162...74Y. doi:10.1016/S0019-1035(02)00060-X.
- Williams, Gareth P. (May 4, 2005). "NOAA Web Page". Geophysical Fluid Dynamics Laboratory. Retrieved 2007-07-21.
- Video based on Juno's Perijove 7 overflight by Seán Doran (see album for more)
Source of article : Wikipedia